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Abstract

While modern machine learning models can perform classification tasks with high
accuracy, deploying them in high risk settings requires methods to measure their
uncertainty. Prior methods of uncertainty quantification output a prediction set
that contains the true label with a user-specified probability, but these guarantees
only hold on average over the entire dataset rather than for each class. Here, we
present CCAPS1, an algorithm which can convert a black-box classifier to output a
prediction set of labels with a finite-sample coverage guarantee, conditioned on
the input being from any class. CCAPS works on any dataset, can wrap around any
model, and is flexible enough to allow users to choose a subset of classes on which
they want the coverage guarantees to hold. Through experiments with classical
machine learning classifiers and modern deep neural networks on MNIST, CIFAR-
10 and ImageNet, we demonstrate the empirical effectiveness of our theoretical
guarantees.

1 Introduction

Machine learning classifiers are increasingly being used for a variety of high-stakes applications
[1, 2, 3]. Suppose a doctor is working at a hospital with a new influx of patients experiencing
respiratory symptoms. To handle the large number of patients, they are interested in accelerating
diagnosis by utilizing a deep neural network which can predict whether a patient has COVID, the FLU,
or the COMMON COLD from a lung scan. They would like to rely on the predictions of the model, but
have no way of measuring the uncertainty of this diagnosis.

Existing methods such as [4, 5] predict a set of labels that contains the right diagnosis with a user-
specified probability. However in this setting, these techniques might not be as helpful. Consider the
case where a medical image classifier is trained on a dataset where 95% of lung scans are of patients
that are COVID-negative. Since most respiratory illnesses are likely mild cases of the FLU or the
COMMON COLD, the model could output the resulting prediction set {FLU, COMMON COLD} and
satisfy the coverage guarantee.

What would help a doctor the most is not coverage across the whole dataset but class-conditional
coverage, or the guarantee that the true label is contained in the prediction set conditioned on any
class, such as COVID. Formally speaking, suppose we have a calibration set of n data samples
{(Xi, Yi)}ni=1 with features Xi and discrete classes Yi. Our goal is to construct a set-valued function
Ĉn,α ∶ X → 2Y for an unseen data sample (Xn+1, Yn+1) which achieves class-conditional coverage.
In other words,

P [Yn+1 ∈ Ĉn,α(Xn+1) ∣ Yn+1 = y] ≥ 1 − α. (1)

In this paper, we introduce CCAPS (Class-Conditional Adaptive Prediction Sets), an algorithm which
can convert a black-box classifier to output a predictive set of labels formally guaranteed to satisfy

1Our code is available on GitHub: https://github.com/jtguibas/ccaps.

https://github.com/jtguibas/CCAPS


(1) given a calibration set. CCAPS works regardless of how big the calibration set is (finite-sample
guarantee), works on any dataset (distribution-free), can wrap around any model (model-agnostic),
and is flexible enough to allow users to choose a subset of classes on which they want the coverage
guarantees to hold.

In summary our contributions are as follows: 1) we introduce CCAPS, a conformal prediction
algorithm to guarantee class-conditional coverage; 2) we formally justify the theoretical guarantees
of CCAPS; and 3) we demonstrate the empirical effectiveness of CCAPS through a comprehensive set
of experiments.

2 Related work

CCAPS is largely inspired by the conformal prediction literature. Conformal prediction was introduced
in [6] as a non-parametric approach to constructing prediction intervals with probabilistic guarantees
for a variety of black-box learning algorithms [7]. It has since been adapted to a variety of tasks
in machine learning: [8] applied the result to low-dimensional non-parametric regression, [9] then
utilized conformal methods in high-dimensional regression, and [10] recently applied it to image
segmentation with expected loss controlled to a user-specified level.

There has been significant work done into improving set-valued classifiers built on conformal methods.
While [11] argues that achieving conditional coverage on a given example is impossible, [4, 12]
attempt to achieve approximately conditional coverage. [13] proposed the use of density estimators
per class to construct prediction sets that have desirable coverage guarantees and are adaptive to each
class. [14, 15] applied these techniques to modern neural networks and deep learning by utilizing the
outputs of the softmax function for calibration. [16, 17] generalized the conformal procedure to the
multi-class context, while [16] also introduced the desiderata of reducing the expected prediction set
cardinality of a set-valued classifier, and presented an algorithm to control user-specified error levels
conditioned on each class. Follow up work in [5] introduced a regularization term to penalize large
set sizes. Our approach will utilize split-conformal methods as in [9, 18] that splits a given dataset
for conformal prediction on most black-box learning algorithms.

CCAPS builds mostly off of the work of Adaptive Prediction Sets by Romano et. al which guarantee
marginal coverage and perform favorably in terms of approximate conditional coverage compared to
alternative methods [4]. To our knowledge, no one has yet adapted the techniques introduced in [4]
to the class conditional setting.

3 Method

3.1 Adaptive Prediction Sets

We will introduce a general technique for developing prediction sets with weaker coverage guarantees
than class-conditional coverage. In particular, we follow the presentation in [4]. Suppose we have
n data samples {(Xi, Yi)}ni=1 with features Xi ∈ X and discrete classes Yi ∈ Y = {1, ...,K}. The
samples are drawn exchangeably from a joint distribution PXY . The goal of this section is to
construct a set-valued function Ĉn,α ∶ X → 2Y for an unseen data sample (Xn+1, Yn+1) which
achieves marginal coverage. In other words,

P [Yn+1 ∈ Ĉn,α(Xn+1)] ≥ 1 − α. (2)

Given a black-box learning algorithm, we can train a model π and compute π̂y(x) which estimates
πy(x) = P[Yi = y∣Xi = x] for each x ∈ X and y ∈ Y . Let k∗ denote the class with the k-th largest
probability mass. Then, for any threshold τ ∈ [0,1], [4] defines the conditional quantile function as
follows:

Q(x;π, τ) =min{k ∈ {1, ...,K} ∶ π1∗(x) + ... + πk∗(x) ≥ τ}. (3)
If we have access to πy(x), then the smallest prediction set for a confidence level α can be produced
by the set {1∗, ...,Q(x;πy(x),1 − α)∗}. [4] defines the following prediction set generating function,
which we will denote as S:

S(x;π, τ) = {{1
∗, ..., (Q(x;π, τ) − 1)∗} with probability T (x;π, τ)

{1∗, ...,Q(x;π, τ)∗} otherwise
(4)
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where

T (x;π, τ) = ∑
Q(x;π,τ)(x)
k=1 πk∗(x) − τ
πQ(x;π,τ)∗(x)

(5)

T (x;π, τ) can be thought of as the tie-breaking probability to produce strictly smaller sets while
maintaining coverage. We will now define the inverse quantile conformity score function E,

E(x, y;π) =min{τ ∈ [0,1] ∶ y ∈ S(x;π, τ)} (6)

We will now discuss how we can use these functions to develop prediction sets which achieve the
guarantees described in (2). Given a black-box model π̂, for each data sample in {(Xi, Yi)}ni=1, we
will compute Ei = E(Xi, Yi; π̂), which is the threshold value for the true label to be contained in the
set generated by S. Then, we will compute the 1 − α quantile of {Ei}ni=1 denoted τ̂ . We can then
create prediction sets for a new data point (Xn+1, Yn+1) with a model via:

ĈSCn,α(Xn+1) = S(Xn+1; π̂, τ̂) (7)

For more details on this procedure, please refer to [4].

3.2 Our Method

The procedure described above guarantees marginal coverage over the entire dataset. However, recall
that we are interested in creating prediction sets that guarantee class-conditional coverage. Formally
speaking, for each each class y ∈ Y we would like to guarantee:

P [Yn+1 ∈ Ĉscn,α(Xn+1) ∣ Yn+1 = y] ≥ 1 − α. (8)

To create prediction sets which satisfy this guarantee, we adapt the split conformal calibration
procedure from Algorithm 2 in [9]. We repeat the calibration step K times, once for each class. In
particular, we partition the calibration set by class and compute the threshold τ̂k as done in Section
3.1. This threshold guarantees marginal coverage on its respective calibration set and because the
calibration set contains examples exclusively from one class, this threshold now satisfies the property
of being class-conditional.

Now we have a set of thresholds {τ̂1, ..., τ̂K} which guarantee marginal coverage conditioned on their
respective class. Since we do not have access to the true label at test time, we must use the worst-case
threshold τ̂max = maxk{τ̂1, ..., τ̂K} to guarantee class conditional coverage. Since τ̂max ≥ τ̂k for
k = {1, . . . ,K}, the threshold τ̂max guarantees class conditional coverage. For technical details,
please refer to the pseudocode for CCAPS below.

Algorithm 1 CCAPS (Class Conditional Adaptive Prediction Sets)
1: Input: dataset {(Xi, Yi)}ni=1, new data point Xn+1, confidence level α, number of classes K,

exclusion threshold γ ∈ [0,K − 1]
2: Split the training data into 2 subsets, Itrain,Ical

3: Split Ical into K disjoint subsets I(1)cal , . . . ,I
(K)
cal , where I(k)cal = {(Xi, Yi) ∈ Ical ∣ Yi = k}

4: π̂ ← black-box learning model trained on Itrain
5: for k ∈ 1, . . . ,K do
6: Ei ← E(Xi, Yi; π̂), ∀ (Xi, Yi) ∈ I(k) where E is defined in (6)
7: τ̂k ← the ⌈(1 − α)(1 + ∣I(k)cal ∣)⌉-th largest value in {Ei}i∈I(k)cal

8: end for
9: {τ̂k}← {τ̂k} excluding top γ largest τ̂k

10: τ̂max ←maxk{τ̂k}
11: ĈSCn,α(Xn+1)← S (Xn+1; π̂, τ̂max)
12: Output: The 1 − α class-conditional prediction set ĈSCn,α(Xn+1) for unobserved label Yn+1

Class-conditional coverage is a much stronger guarantee than marginal coverage. As a result, this
can lead to much larger set sizes. Hence, one might wish to condition on a specific subset of classes
rather than all classes. To address this, we propose a new hyperparameter γ, the exclusion threshold.
We can exclude the top γ classes with the largest τ̂ values. This will decrease our average set size by
excluding the γ ”hardest” classes.
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3.3 Theoretical Guarantees

Theorem 1 (CCAPS Coverage Guarantee). Let the data be denoted {(Xi, Yi)}n+1i=1 . If the data is
exchangeable and the black box learning algorithm utilized to train the model in Algorithm 1 is
invariant to permutations of its input samples, the output of Algorithm 1 satisfies the following for
each class k ∈ {1, . . . ,K} (up to the exclusion threshold γ):

P [Yn+1 ∈ Ĉscn,α(Xn+1) ∣ Yn+1 = k] ≥ 1 − α

A full proof is provided in the Appendix.

4 Experiments

Hyperparameters Coverage Min. CC Set Size
Dataset # Calib Method APS CCAPS APS CCAPS APS CCAPS

MNIST (C=10) 10K RFC 0.90 0.96 0.79 0.90 1.49 2.12
MNIST (C=10) 10K MLP 0.90 0.92 0.87 0.89 0.89 0.98

CIFAR10 (C=10) 10K RFC 0.90 0.93 0.85 0.90 5.43 6.27
CIFAR10 (C=10) 10K MLP 0.90 0.94 0.85 0.90 4.94 6.68
ImageNet (C=1K) 25K RN-152 0.90 0.99 0.52 0.91 6.34 296.
CIFAR-10 (C=10) 5K MLP 0.91 0.93 0.86 0.90 5.28 5.5
CIFAR-10 (C=10) 2.5K MLP 0.90 0.94 0.85 0.90 4.26 5.00
CIFAR-10 (C=10) 1K MLP 0.90 0.92 0.80 0.89 4.33 4.99

CIFAR10-LT (C=10) 10K RFC 0.90 0.99 0.29 0.90 5.31 9.65

Table 1: Results are displayed for a random forest classifier and a one-layer multi-layer perceptron
on the two datasets CIFAR-10 and MNIST trained on 10000 examples as well as ImageNet where
α = 0.1. Results are averaged over 50 trials.

We empirically demonstrate the performance of CCAPS through a variety of datasets, learning
algorithms, and parameters in Table 1. In terms of datasets, we test on MNIST [19], CIFAR-10 [20],
ImageNet [21], CIFAR-10 [20] with one of the classes reduced by five times. In terms of learning
algorithms, we test the usage of Random Forests, Neural Networks [22], and ResNet152 [23, 24]. In
the following sections, we go into more detail about our experiments.

4.1 Experiment 1: Demonstrating Class Conditional Coverage

Refer to Table 1 for results. We report the marginal coverage, the minimum conditional coverage
over all classes (denoted Min. CC), and the average set size. Compared to APS, we are able to achieve
class conditional coverage across all classes (hence the minimum coverage across all the classes is
0.9). In challenging settings like ImageNet across multiple classes, CCAPS is still able to guarantee
class conditional coverage while APS does not. Set sizes for CCAPS show only small increases when
compared to APS on most datasets, which indicates that we have to make only a small sacrifice to
invoke our coverage guarantee. The set size difference is dramatic only for ImageNet, but we are still
able to rule > 70% of possible classes while still preserving class conditional coverage.

In practice, a practitioner may only the need the coverage guarantee to hold for any subset of the
classes: we demonstrate in the next section that our algorithm is flexible enough to accomodate for
this and exhibit its nice properties.

4.2 Experiment 2: Finite-sample Guarantees

We demonstrate finite-sample guarantees by showing that we achieve class conditional coverage for
calibration sets of varying sizes. In our experiments, we ran APS and CCAPS on CIFAR-10 with 5000,
2500, and 1000 calibration points. In all cases, CCAPS achieves class conditional coverage for all
classes. See Table 1 for results.
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4.3 Experiment 3: Long-tailed Datasets

Class conditional coverage is largely motivated by the class imbalanced setting. As a result, we
purposely modified CIFAR-10 to have one severely rare class. In particular, we reduce the first class
in CIFAR-10 by five times. Results are shown in Table 1.

5 Conclusion

In conclusion, we have introduced CCAPS, an algorithm which can convert a black-box classifier to
output a predictive set of labels formally guaranteed to satisfy class-conditional coverage given a
calibration set. CCAPS works regardless of how big the calibration set is (finite-sample guarantee),
works on any dataset (distribution-free), can wrap around any model (model-agnostic), and is flexible
enough to allow users to choose a subset of classes on which they want the coverage guarantees
to hold. We empirically demnostrate the effectiveness of CCAPS through a comprehensive set of
experiments.

In future work, we would like to explore the idea of approximate class-conditional coverage. In other
words, can we strike a middle ground between marginal coverage and class-conditional coverage?
We recognize the fact that achieving class-conditional coverage results in larger prediction set sizes,
so we would like to see if we can loosen the guarantee and get significantly smaller prediction sets.

6 Appendix

Proof of Theorem 1. By our construction of the prediction set in (6), we know that:

Yn+1 ∈ ĈSCn,α(Xn+1)
if and only if

min{τ ∈ [0,1] ∶ Yn+1 ∈ S(Xn+1; π̂, τ)} ≤ τ̂max

or, equivalently, if and only if
En+1 ≤ τ̂max

We want to show of course that the probability of this event, conditioned on Yn+1 being any class k,
is at least 1 − α. Let the label Yn+1 be any label k in out set of classes {1, . . . ,K}. Recall that τ̂k is
indeed the ⌈(1 − α)(1 + ∣I(k)cal ∣)⌉-th largest value in {Ei}i∈I(k)cal

. Since all the conformity scores En+1
and {Ei}i∈I(k)cal

are exchangeable, we know that the probability En+1 being at most α is at least 1 −α.
So, we can write:

P [En+1 ≤ τ̂k ∣ Yn+1 = k] ≥ 1 − α
Moreover, from Algorithm 1, recall that we set τ̂k ≤ τ̂max. If En+1 ≤ τ̂k, then En+1 ≤ τ̂max, which
implies k is in the prediction set. Hence,

En+1 ≤ τ̂k Ô⇒ k ∈ ĈSCn,α(Xn+1)
With this, we can conclude that

P [Yn+1 ∈ ĈSCn,α(Xn+1)∣Yn+1 = k] ≥ 1 − α
which is the desired class conditional coverage guarantee. It trivially follows that this proof can be
generalized for any exclusion threshold γ.
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